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These derivations are not part of the official forthcoming version of Vasilaky and Leonard

(2016) in Economic Development and Cultural Change. Rather, they are supplementary

derivations, particularly for those who are unfamiliar with the target input model, and who

have not derived the intermediary steps shown here. The syntax and lettering does not ex-

actly correspond to what is used in the published version. We changed some of the notation

in the final version for ease of reading.

Target Input Model

There are two main sources for the target input model. Udry and Bardhan’s Development

Microeconomics Handbook, as well as Foster and Rosenzweig (1995). They use different no-

tations.

Farmer i chooses an input level (or, time to apply inputs): θit, at time t, to maximize

profits. The ideal input is θ̃it, and farmer’s profits are larger the closer is θit to θ̃it.

Profits q for farmer i in time t:

qit = 1−
(
θit − θ̃it

)2
(1)

Choose: θit; Target: θ̃it

θ̃it is determined by

θ̃it = θ∗ + µit → µit ∼ N
(
0, ϑ2

µ

)
(2)

Note: Udry/Bardhan Book Version → (κit = κ∗ + µit)

θ∗ ∼ N
(
θ∗t , ϑ

2
θ̃it

)
←

Maximization of expected profit implies that:
(

2
(
θit − θ̃it

)
= 0
)

1



θit = Et

(
θ̃it

)
= θ∗t ⇒

Et (qit) = 1− ϑ2
θ̃it
− ϑ2

µ (3)

Expected profits increase as ϑ2
θ̃it

decreases or as the individual learns about true θ∗.
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(a) Derivation of Et (qit) = 1− ϑ2
θ̃it
− ϑ2

µ

Et (qit) = 1− Et (θ2it) + 2Et

(
θitθ̃it

)
− Et

(
θ̃2it

)
Now θit = Et

(
θ̃it

)
= θ∗t from Maxmization

⇒ Et (θ2it) = Et
(
θ∗t

2
)

1©

⇒ And 2Et

(
θitθ̃it

)
= 2Et

(
θ∗t θ̃it

)
= 2Et (θ∗t (θ∗ + µit)) Plugging in (2)

= 2θ∗tEt (θ∗) + 2θ∗tE (µit)

= 2θ∗t
2 + 0 = 2θ∗t

2 2©

And Et

(
θ̃2it

)
= Et (θ∗ + µit)

2 by (2)

= Et
(
θ∗2
)

+ 2Et (θ∗µit) + Et (µ2
it)

= Et
(
θ∗2
)

+ Et (µ2
it) = Et

(
θ∗2
)

+ ϑ2
µ 3©

Putting 1© 2© 3© together:

Et (qit) = 1− Et
(
θ∗t

2
)

+ 2θ2t −
(
Et
(
θ∗2
)

+ ϑ2
µ

)
= 1− θ∗t 2 + 2θ∗t

2 − Et
(
θ∗2
)
− ϑ2

µ

= 1−
[
Et
(
θ∗2
)
− 2E (θ∗)E (θ∗) + E (θ∗)2

]
− ϑ2

µ = 1− ϑ2
θ̃it
− ϑ2

µ

which is Equation (3), pg 155 in Development Microeconomics By Pranab Bardhan, Christo-

pher Udry.
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Farmer i’s variance of her beliefs about θ∗ in period t-1 is ϑ2
θ̃i,t−1

, after observing θ̃i,t and

applying Baye’s rule for a Normal distribution with Normal prior. (b)

For observation model θ̃it|θ∗ ∼ N
(
θ∗, ϑ2

µ

)
and priors on θ̃it ∼ N

(
θ∗i,t−1, ϑ

2
θ̃i,t−1

)
The posterior variance of θ̃, ϑ2

θ̃it
after one update is: (b) 1

ϑ2
θ̃it

=
ϑ2
θ̃i,t−1

ϑ2
µ

ϑ2
θ̃i,t−1

+ ϑ2
µ

(4)

=
1
1

ϑ2
θ̃i,t−1

+
1

ϑ2
µ

if we plug in for (t-1)

=
1

1
1
1

ϑ2
θ̃i,t−2

+
1

ϑ2
µ

+
1

ϑ2
µ

=
1

1

ϑ2
θ̃i,t−2

+ 2
1

ϑ2
µ

We can see that if we continue to iterate until until period 0:

=
1

1

ϑ2
θ̃io

+Nt−1ϑ
2
µ

where Nt−1 represents the number of iterations from period t-1 to period 0,

Define precision as Pio =
1

ϑ2
θ̃io

and Pµ =
1

ϑ2
µ

,

ϑ2
θ̃it

=
1

Pio +Nt−1ϑ2
µ

(4’)

lim
N→∞

ϑ2
θ̃i,t

= 0⇒ lim
N→∞

E (qit) = 1− ϑ2
µ

1See Derivation on next page 4.
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Here we do a side derivation for what the posterior distribution with normally distributed

data with normal priors, with a change of notation.

Observation model y|µ ∼ N(µ, ϑ2), Normal prior ∼ N (m,S2)

We consider the a normal prior of mean m and variance s2.

f(µ) = 1√
2πs2

e−
1

2s2
(µ−m)2

The posterior is proportional to the prior times the likelihood. Baye’s rule f (µ|y) ∼

f (y|µ) f (µ).

= e

−
(y − µ)2

2ϑ2


e

−
(µ−m)2

2S2



= e

−(y − µ)2

2ϑ2
−

(y −m)2

2S2



= e

−1

2

{
µ2 − 2µy + y2

ϑ2
+
m2 − 2mµ+ µ2

S2

}

= e
−

1

2

S
2µ2 − 2µyS2 + y2S2

ϑ2S2
+
ϑ2m2 − 2mµϑ2 + µ2ϑ2

ϑ2S2



Drop −1

2

{
y2S2 + ϑ2m2

ϑ2S2

}
since constants (known)

So f (µ|y) ∼ e
−

1

2

S
2µ2 − 2µyS2

ϑ2S2
+
−2mµϑ2 + µ2ϑ2

ϑ2S2



= e
−

1

2

(S2 + ϑ2)µ2 − 2µ (yS2 +mϑ2)

S2ϑ2



= e

−
1

2


µ2 − 2µ

yS2 +mϑ2

S2 + ϑ2

S2ϑ2

S2 + ϑ2



5



= e

−
1

2



(
µ− yS2 +mϑ2

S2 + ϑ2

)2

S2ϑ2

S2 + ϑ2



The 2nd term is a constant when you square this out, and can be dropped.

So f (µ|y) is normal with moments:

mean:
yS2 +mϑ2

S2 + ϑ2
sd:

S2ϑ2

S2 + ϑ2

We used the above posterior sd in equation (4). Now back to the target input model.
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From Pg (3), if lim
N→∞

ϑ2
θ̃it

= 0, then in the limit i’s beliefs about θ∗ are distributed as ∼

N (θ∗t , 0).

Learning From Others

Now suppose person i can observe person j’s input choice, she observes person j’s choice

θ̃jt + εjt, or θ∗ + µjt + εjt.

For the moment, we assume that information flow, and the errors µit and µjt, are inde-

pendent (Cov(µit, µjt)=0). Now farmer i has an additional update regarding θ̃it using her

neighbors’ plot. A second update takes the following form.

Let ϑ2
v =

ϑ2
θ̃i,t−1

ϑ2
µ

ϑ2
θ̃i,t−1

+ ϑ2
µ

1st update on the priors.

Let ϑ2
z = ϑ2

µ + ϑ2
ε , which is our additional data coming from an update from peers.

where θ̃jt ∼ N (θ∗, ϑ2
z)

Following our derivation on Pg 4, the 2nd update takes the following form:

ϑ2
zϑ

2
v

ϑ2
z + ϑ2

v

=

ϑ2
z

ϑ2
θ̃i,t−1

ϑ2
µ

ϑ2
θ̃i,t−1

+ ϑ2
µ

ϑ2
z +

ϑ2
θ̃i,t−1

ϑ2
µ

ϑ2
θ̃i,t−1

+ ϑ2
µ

=

ϑ2
zϑ

2
θ̃i,t−1

ϑ2
µ

ϑ2
θ̃i,t−1

+ ϑ2
µ

ϑ2
zϑ

2
θ̃i,t−1

+ ϑ2
zϑ

2
µ + ϑ2

θ̃i,t−1
ϑ2

µ

ϑ2
θ̃i,t−1

+ ϑ2
µ

=
ϑ2
zϑ

2
θ̃i,t−1

ϑ2
µ

ϑ2
zϑ

2
θ̃i,t−1

+ ϑ2
zϑ

2
µ + ϑ2

θ̃i,t−1
ϑ2
µ

=
1

1

ϑ2
µ

+
1

ϑ2
θ̃i,t−1

+
1

ϑ2
z

=
1

1

ϑ2
µ

+
1

ϑ2
θ̃i,t−1

+
1

ϑ2
µ + ϑ2

ε

Let Pv =
1

ϑ2
µ + ϑ2

ε

.

Now if we substitute in for ϑ2
θ̃i,t−1

, the farmer will update her priors using her own observations

of θ̃it and her, S, neighbors θ̃jt, and the variance of her beliefs about θ∗, between time t− 1

and time 0 are:
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ϑ2
θ̃i,t−1

=
1

Pio +Nt−1Pµ + St−1Pv

For the remainder of the model found in Vasilaky and Leonard (2016), see the Appendix in

the paper. The pre-print version can be found on Columbia University’s Academic Commons.
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